

Summit ‘97

Normalization Is a Nice Theory

by David Adams & Dan Beckett

©1997 David Adams & Dan Beckett. All rights reserved.

Content adapted from

Programming 4th Dimension: The Ultimate Guide

,
by David Adams & Dan Beckett, published by Foresight Technology, Inc.

Normalization Is a Nice Theory

Quick Look

Designing a normalized database structure is the first step when
building a database that is meant to last. Normalization is a simple,
common-sense, process that leads to flexible, efficient, maintainable
database structures. We’ll examine the major principles and objec-
tives of normalization and denormalization, then take a look at some
powerful optimization techniques that can break the rules of
normalization.

What is Normalization?

Simply put, normalization is a formal process for determining which
fields belong in which tables in a relational database. Normalization
follows a set of rules worked out at the time relational databases
were born. A normalized relational database provides several
benefits:

❖ Elimination of redundant data storage.

❖ Close modeling of real world entities, processes, and their re-
lationships.

❖ Structuring of data so that the model is flexible.

Normalization ensures that you get the benefits relational databases
offer. Time spent learning about normalization will begin paying for
itself immediately.

Why Do They Talk Like That?

Some people are intimidated by the language of normalization. Here
is a quote from a classic text on relational database design:
© 1997 David Adams & Dan Beckett. All Rights Reserved.
Adapted from Programming 4th Dimension: The Ultimate Guide. 1

Normalization Is a Nice Theory

2

A relation is in third normal form (3NF) if and only if it is in 2NF and every
nonkey attribute is nontransitively dependent on the primary key.

C.J. Date
An Introduction to Database Systems

Huh? Relational database theory, and the principles of normaliza-
tion, were first constructed by people intimately acquainted with set
theory and predicate calculus. They wrote about databases for like-
minded people. Because of this, people sometimes think that nor-
malization is “hard”. Nothing could be more untrue. The principles
of normalization are simple, common-sense ideas that are easy to
apply. Here is another author’s description of the same principle:

A table should have a field that uniquely identifies each of its records, and
each field in the table should describe the subject that the table represents.

Michael J. Hernandez
Database Design for Mere Mortals

That sounds pretty sensible. A table should have something that
uniquely identifies each record, and each field in the record should
be about the same thing. We can summarize the objectives of nor-
malization even more simply:

Eliminate redundant fields.

Avoid merging tables.

You’ve probably intuitively followed many normalization principles
all along. The purpose of formal normalization is to ensure that your
common sense and intuition are applied consistently to the entire
database design.

Design Versus Implementation

Designing a database structure and implementing a database struc-
ture are different tasks. When you design a structure it should be
described without reference to the specific database tool you will
use to implement the system, or what concessions you plan to make
for performance reasons. These steps come later. After you’ve
designed the database structure abstractly, then you implement it in
a particular environment—4D in our case. Too often people new to
database design combine design and implementation in one step.
4D makes this tempting because the structure editor is so easy to
use. Implementing a structure without designing it quickly leads to
flawed structures that are difficult and costly to modify. Design first,
implement second, and you’ll finish faster and cheaper.
© 1997 David Adams & Dan Beckett. All Rights Reserved.
Adapted from Programming 4th Dimension: The Ultimate Guide.

Normalized Design: Pros and Cons

Normalized Design: Pros and Cons

We’ve implied that there are various advantages to producing a
properly normalized design before you implement your system. Let’s
look at a detailed list of the pros and cons:

We think that the pros outweigh the cons.

Terminology

There are a couple terms that are central to a discussion of normal-
ization: “key” and “dependency”. These are probably familiar
concepts to anyone who has built relational database systems,
though they may not be using these words. We define and discuss
them here as necessary background for the discussion of normal
forms that follows.

Primary Key

The primary key is a fundamental concept in relational database
design. It’s an easy concept: each record should have something that
identifies it uniquely. The primary key can be a single field, or a
combination of fields. A table’s primary key also serves as the basis
of relationships with other tables. For example, it is typical to relate
invoices to a unique customer ID, and employees to a unique
department ID.

Note: 4D does not implicitly support multi-field primary keys, though multi-field keys are com-
mon in other client-server databases. The simplest way to implement a multi-field key in 4D
is by maintaining an additional field that stores the concatenation of the components of your
multi-field key into a single field. A concatenated key of this kind is easy to maintain using
a 4D V6 trigger.

Pros of Normalizing Cons of Normalizing

More efficient database structure.

Better understanding of your data.

More flexible database structure.

Easier to maintain database structure.

Few (if any) costly surprises down the
road.

Validates your common sense and intu-
ition.

Avoid redundant fields.

Insure that distinct tables exist when nec-
essary.

You can’t start building the database
before you know what the user needs.
© 1997 David Adams & Dan Beckett. All Rights Reserved.
Adapted from Programming 4th Dimension: The Ultimate Guide. 3

Normalization Is a Nice Theory

4

A primary key should be unique, mandatory, and permanent. A clas-
sic mistake people make when learning to create relational
databases is to use a volatile field as the primary key. For example,
consider this table:

[Companies]
Company Name
Address

Company Name is an obvious candidate for the primary key. Yet,
this is a bad idea, even if the Company Name is unique. What hap-
pens when the name changes after a merger? Not only do you have
to change this record, you have to update every single related record
since the key has changed.

Another common mistake is to select a field that is usually unique
and unchanging. Consider this small table:

[People]
Social Security Number
First Name
Last Name
Date of birth

In the United States all workers have a Social Security Number that
uniquely identifies them for tax purposes. Or does it? As it turns out,
not everyone has a Social Security Number, some people’s Social
Security Numbers change, and some people have more than one.
This is an appealing but untrustworthy key.

The correct way to build a primary key is with a unique and
unchanging value. 4D’s Sequence number function, or a unique ID gen-
erating function of your own, is the easiest way to produce synthetic
primary key values.

Functional Dependency

Closely tied to the notion of a key is a special normalization concept
called functional dependence or functional dependency. The sec-
ond and third normal forms verify that your functional dependencies
are correct. So what is a “functional dependency”? It describes how
one field (or combination of fields) determines another field. Con-
sider an example:

[ZIP Codes]
ZIP Code
City
County
State Abbreviation
State Name
© 1997 David Adams & Dan Beckett. All Rights Reserved.
Adapted from Programming 4th Dimension: The Ultimate Guide.

Normal Forms

ZIP Code is a unique 5-digit key. What makes it a key? It is a key
because it determines the other fields. For each ZIP Code there is a
single city, county, and state abbreviation. These fields are function-
ally dependent on the ZIP Code field. In other words, they belong
with this key. Look at the last two fields, State Abbreviation and State
Name. State Abbreviation determines State Name, in other words,
State Name is functionally dependent on State Abbreviation. State
Abbreviation is acting like a key for the State Name field. Ah ha! State
Abbreviation is a key, so it belongs in another table. As we’ll see, the
third normal form tells us to create a new States table and move State
Name into it.

Normal Forms

The principles of normalization are described in a series of progres-
sively stricter “normal forms”. First normal form (1NF) is the easiest
to satisfy, second normal form (2NF), more difficult, and so on.
There are 5 or 6 normal forms, depending on who you read. It is
convenient to talk about the normal forms by their traditional names,
since this terminology is ubiquitous in the relational database indus-
try. It is, however, possible to approach normalization without using
this language. For example, Michael Hernandez’s helpful Database
Design for Mere Mortals uses plain language. Whatever terminol-
ogy you use, the most important thing is that you go through the
process.

Note: We advise learning the traditional terms to simplify communicating with other data-
base designers. 4D and ACI do not use this terminology, but nearly all other database envi-
ronments and programmers do.

First Normal Form (1NF)

The first normal form is easy to understand and apply:

A table is in first normal form if it contains no repeating groups.

What is a repeating group, and why are they bad? When you have
more than one field storing the same kind of information in a single
table, you have a repeating group. Repeating groups are the right
way to build a spreadsheet, the only way to build a flat-file database,
and the wrong way to build a relational database. Here is a common
example of a repeating group:

[Customers]
Customer ID
Customer Name
Contact Name 1
Contact Name 2
Contact Name 3
© 1997 David Adams & Dan Beckett. All Rights Reserved.
Adapted from Programming 4th Dimension: The Ultimate Guide. 5

Normalization Is a Nice Theory

6

What’s wrong with this approach? Well, what happens when you
have a fourth contact? You have to add a new field, modify your
forms, and rebuild your routines. What happens when you want to
query or report based on all contacts across all customers? It takes a
lot of custom code, and may prove too difficult in practice. The
structure we’ve just shown makes perfect sense in a spreadsheet, but
almost no sense in a relational database. All of the difficulties we’ve
described are resolved by moving contacts into a related table.

[Customers]
Customer ID
Customer Name

[Contacts]
Customer ID (this field relates [Contacts] and [Customers])
Contact ID
Contact Name

Second Normal Form (2NF)

The second normal form helps identify when you’ve combined two
tables into one. Second normal form depends on the concepts of the
primary key, and functional dependency. The second normal form
is:

A relation is in second normal form (2NF) if and only if it is in 1NF and
every nonkey attribute is fully dependent on the primary key.

C.J. Date
An Introduction to Database Systems

In other words, your table is in 2NF if:
1) It doesn’t have any repeating groups.

2) Each of the fields that isn’t a part of the key is functionally dependent on
the entire key.

If a single-field key is used, a 1NF table is already in 2NF.
© 1997 David Adams & Dan Beckett. All Rights Reserved.
Adapted from Programming 4th Dimension: The Ultimate Guide.

Normal Forms

Third Normal Form (3NF)

Third normal form performs an additional level of verification that
you have not combined tables. Here are two different definitions of
the third normal form:

A table should have a field that uniquely identifies each of its records, and
each field in the table should describe the subject that the table represents.

Michael J. Hernandez
Database Design for Mere Mortals

To test whether a 2NF table is also in 3NF, we ask, “Are any of the non-key
columns dependent on any other non-key columns?

Chris Gane
Computer Aided Software Engineering

When designing a database it is easy enough to accidentally com-
bine information that belongs in different tables. In the ZIP Code
example mentioned above, the ZIP Code table included the State
Abbreviation and the State Name. The State Name is determined by
the State Abbreviation, so the third normal form reminds you to
move this field into a new table. Here’s how these tables should be
set up:

[ZIP Codes]
ZIP Code
City
County
State Abbreviation

[States]
State Abbreviation
State Name

Higher Normal Forms

There are several higher normal forms, including 4NF, 5NF, BCNF,
and PJ/NF. We’ll leave our discussion at 3NF, which is adequate for
most practical needs. If you are interested in higher normal forms,
consult a book like Date’s An Introduction to Database Systems.
© 1997 David Adams & Dan Beckett. All Rights Reserved.
Adapted from Programming 4th Dimension: The Ultimate Guide. 7

Normalization Is a Nice Theory

8

Learning More About Normalization

ACI University in the United States offers a course on designing rela-
tional databases that covers normalization in detail. If you cannot
attend a course, here are some suggestions for books that treat these
concepts in greater detail.

Michael J. Hernandez

Database Design for Mere Morals

A Hands-On Guide to Relational Database Design

Addison Wesley

1997

ISBN 0-201-69471-9

We recommend Michael Hernandez’s very approachable book on
the database design process. (And at $27.95 you can’t go wrong.)
Unfortunately, he does not correlate his discussion with traditional
normalization terminology.

C. J. Date

An Introduction to Database Systems, Volume I

Fifth Edition

Addison-Wesley Systems Programming Series

1990

ISBN: 0-201-51381-1

This is the classic textbook on database systems. It is widely avail-
able in libraries and technical bookstores. It’s worth checking out of
a library for reference, but if it makes your eyes cross put it down.

Chris Gane

Computer-Aided Software Engineering

The Methodologies, The Products, and The Future

Prentice Hall

1990

ISBN: 0-13-176231-1

Gane, one of the pioneers of RAD (Rapid Application Develop-
ment), is a widely published author on the benefits of CASE
(Computer Aided Software Engineering). His discussions of database
normalization are at an intermediate level.
© 1997 David Adams & Dan Beckett. All Rights Reserved.
Adapted from Programming 4th Dimension: The Ultimate Guide.

Denormalization

Denormalization

Denormalization is the process of modifying a perfectly normalized
database design for performance reasons. Denormalization is a nat-
ural and necessary part of database design, but must follow proper
normalization. Here are a few words from Date on denormalization:

The general idea of normalization...is that the database designer should
aim for relations in the “ultimate” normal form (5NF). However, this rec-
ommendation should not be construed as law. Sometimes there are good
reasons for flouting the principles of normalization.... The only hard re-
quirement is that relations be in at least first normal form. Indeed, this is
as good a place as any to make the point that database design can be an
extremely complex task.... Normalization theory is a useful aid in the pro-
cess, but it is not a panacea; anyone designing a database is certainly ad-
vised to be familiar with the basic techniques of normalization...but we do
not mean to suggest that the design should necessarily be based on normal-
ization principles alone.

Date, pages 528-529

Deliberate denormalization is commonplace when you’re optimizing
performance. If you continuously draw data from a related table, it
may make sense to duplicate the data redundantly. Denormalization
always makes your system potentially less efficient and flexible, so
denormalize as needed, but not frivolously.

Summary Data

There are techniques for improving performance that involve storing
redundant or calculated data. Some of these techniques break the
rules of normalization, other do not. Sometimes real world require-
ments justify breaking the rules. Intelligently and consciously
breaking the rules of normalization for performance purposes is an
accepted practice, and should only be done when the benefits of the
change justify breaking the rule.

Let’s examine some powerful summary data techniques:

❖ Compound Fields

❖ Summary Fields

❖ Summary Tables

Compound Fields

A compound field is a field whose value is the combination of two
or more fields in the same record. Compound fields optimize certain
4D database operations significantly, including queries, sorts,
© 1997 David Adams & Dan Beckett. All Rights Reserved.
Adapted from Programming 4th Dimension: The Ultimate Guide. 9

Normalization Is a Nice Theory

10
reports, and data display. The cost of using compound fields is the
space they occupy and the code needed to maintain them. (Com-
pound fields typically violate 2NF or 3NF.)

Save Combined Values

Combining two or more fields into a single field is the simplest
application of the time-space trade-off. For example, if your data-
base has a table with addresses including city and state, you can
create a compound field (call it City_State) that is made up of the
concatenation of the city and state fields. Sorts and queries on
City_State are much faster than the same sort or query using the two
source fields—sometimes even 40 times faster.

City_State stores the city and state in one field.

The downside of compound fields for the developer is that you have
to write code to make sure that the City_State field is updated when-
ever either the city or the state field value changes. This is not
difficult to do, but it is important that there are no “leaks”, or situa-
tions where the source data changes and, through some oversight,
the compound field value is not updated.

Conditions for Building Compound Fields

Compound fields optimize situations that meet any of these
conditions:

❖ The database uses multiple fields in a sequential operation.

❖ The database combines two or more fields routinely for any
purpose.

❖ The database requires a compound key.

Let’s look at each of these situations in detail.

USING MULTIPLE FIELDS IN A SEQUENTIAL OPERATION

Sorting on two indexed fields takes about twenty times longer than
sorting on one indexed field. This is a case where you can give your
system a huge speed improvement by using a compound field. If,
for example, you routinely sort on state and city, you can improve
© 1997 David Adams & Dan Beckett. All Rights Reserved.
Adapted from Programming 4th Dimension: The Ultimate Guide.

Summary Fields
sort speeds dramatically by creating an indexed, compound field
that contains the concatenated state and city field values, and sort on
this combination.

THE SOURCE FIELDS ARE COMBINED ROUTINELY

If you have fields that are routinely combined on forms, reports and
labels, you can optimize these operations by pre-combining the
fields; then the combined values are displayed without further calcu-
lation. This makes these operations noticeably faster. An additional
benefit is that combined values makes it easier for end users to con-
struct reports and labels with the information they need.

COMPOUND KEYS

A compound key ensures uniqueness based on a combination of
two or more fields. An example of a compound key is the unique
combination of an employee’s identification number, first name, and
last name. In 4D, ensuring that these values are unique in combina-
tion requires a programmed multiple-field query or a compound
field. Once you have created a compound field to store the key, you
can use 4D’s built-in uniqueness-verification feature and save the
time spent querying. Or you can query on the compound field and
find the results more quickly than with an equivalent multi-field
query.

When to Create Compound Fields

The three cases discussed here show obvious examples of where
compound fields improve speed. Compound fields can also provide
a significant improvement in ease of use that justifies their use in less
obvious examples. Your users can easily query, sort, and report on
compound fields. They don’t have to learn how to combine these
values correctly in each of 4D’s editors, and they don’t have to ask
you to do this for them. Ease of use for end users almost always
counts in favor of this technique even when the time savings are
small.

Summary Fields

A summary field is a field in a one table record whose value is based
on data in related-many table records. Summary fields eliminate
repetitive and time-consuming cross-table calculations and make cal-
culated results directly available for end-user queries, sorts, and
reports without new programming. One-table fields that summarize
values in multiple related records are a powerful optimization tool.
Imagine tracking invoices without maintaining the invoice total!
© 1997 David Adams & Dan Beckett. All Rights Reserved.
Adapted from Programming 4th Dimension: The Ultimate Guide. 11

Normalization Is a Nice Theory

12
Summary fields like this do not violate the rules of normalization.
Normalization is often misconceived as forbidding the storage of cal-
culated values, leading people to avoid appropriate summary fields.

There are two costs to consider when contemplating using a sum-
mary field: the coding time required to maintain accurate data and
the space required to store the summary field.

Example

Saving summary account data is such a common practice that it is
easy not to notice that the underlying principle is using a summary
field. Consider the following table structure:

A very simple accounting system structure.

The Total_sales field in an Accounts record summarizes values
found in one or more invoice records. You don’t need the summary
field in Accounts since the value can be calculated at any point
through inspection of the Invoices table. But, by saving this critical
summary data, you obtain the following advantages:

❖ A user does not need to wait for an account’s total to be cal-
culated.

❖ 4D’s built in editors—Quick Report, Order by, Query, and
Graph—can use this data directly without performing any spe-
cial calculations.

❖ Reports print quickly because there are no calculations per-
formed.

❖ You can export the results to another program for analysis.

What to Summarize

Summary fields work because you, as a designer, had the foresight
to create a special field to optimize a particular operation or set of
operations. Users may, from time to time, come to you with a new
© 1997 David Adams & Dan Beckett. All Rights Reserved.
Adapted from Programming 4th Dimension: The Ultimate Guide.

Summary Tables
requirement that is not already optimized. This does not mean that
your summary system is not effective, it simply means you need to
consider expanding it. When considering what to optimize using
summary fields, choose operations that users frequently need, com-
plain about, or neglect because they are too slow. Because summary
fields require extra space and maintenance, you should use them
only when there is a definite user benefit.

Summary Tables

A summary table is a table whose records summarize large amounts
of related data or the results of a series of calculations. The entire
table is maintained to optimize reporting, querying, and generating
cross-table selections. Summary tables contain derived data from
multiple records and do not necessarily violate the rules of normal-
ization. People often overlook summary tables based on the
misconception that derived data is necessarily denormalized.

Let’s discusses the use of summary tables by examining a detailed
example.

The ACME Software Company*

Consider a problem and corresponding database solution that uses a
summary table. The ACME Software Company uses a 4D Server
database to keep track of customer product registrations. Here is the
table structure:

ACME’s registration system structure

* Any resemblance between ACME Software Company and persons or companies living or
dead is purely coincidental.
© 1997 David Adams & Dan Beckett. All Rights Reserved.
Adapted from Programming 4th Dimension: The Ultimate Guide. 13

Normalization Is a Nice Theory

14
ACME uses this system to generate mailings, fulfill upgrades, and
track registration trends. Each customer can have many registrations,
and each product can have many registrations. In this situation you
can easily end up with record counts like these:

With even a modest number of products and customers, the registra-
tions table quickly becomes very large. A large registration table is
desirable, as it means that ACME will remain profitable. However, it
makes a variety of other tasks time-consuming:

1) Finding customers who own the product SuperGoldPro Classic.

2) Finding customers who own three or more copies of SuperGoldPro Work-
group.

3) Finding customers who own three or more copies of SuperGoldPro Work-
group and exactly two copies of SuperGoldPro ReportWriterPlus.

4) Showing a registration trend report that tells, for each product, how many
customers have one copy registered, how many have two copies, and so on.

You can answer these questions with the existing structure. The
problem is that it is too difficult for users to do themselves, requires
custom programming, and can take a long time to execute.

In a case like ACME’s, keeping a summary table to simplify and opti-
mize querying and reporting is well worth the extra space and effort.
Here is a modified table structure:

ACME’s registration system structure with a summary table

Original Record Counts

Table Count

Customers 10,000

Products 100

Registrations 50,000
© 1997 David Adams & Dan Beckett. All Rights Reserved.
Adapted from Programming 4th Dimension: The Ultimate Guide.

Summary Tables
The Summary table forms a many-to-many relationship between
Customers and Products, just like the Registrations table. From this
structure view it does not seem that the Summary table offers any
benefit. Consider, however, these representative record counts:

The Summary table stores only one record for each product that a
customer owns. In other words, if the customer owns ten copies of
a particular product they have ten registration records and one reg-
istration summary record. The relationship between the number of
records in the Summary table and the Registrations table is data-
dependent. You need to examine your data to find when a summary
table is efficient. Consider the range of possible values:

In cases where the record count is lower in Summary than in Regis-
trations, an equivalent join from Summary is faster. Not only this,
you can now find customers based on complex registration condi-
tions with simple indexed queries.

Let’s look at how you would satisfy the requests listed at the begin-
ning of this example with and without the Summary table.

Record Counts with Summary Table

Table Count

Customers 10,000

Products 100

Registrations 50,000

Summary 13,123

Possible summary table record counts

Registrations Summary Reason

50,000 1 One customer registered every
product sold. (Try to double your
customers!)

50,000 10,000 Multiple-copy registrations are com-
mon.

50,000 37,500 Multiple-copy registrations account
for roughly a half (25,000) of all reg-
istrations.

50,000 50,000 No customer owns two copies of
any product. (Time to increase the
marketing budget!)
© 1997 David Adams & Dan Beckett. All Rights Reserved.
Adapted from Programming 4th Dimension: The Ultimate Guide. 15

Normalization Is a Nice Theory

16
TASK 1: A SIMPLE QUERY

Find customers who own the product SuperGoldPro Classic.

The steps are exactly the same in this example. The difference is that
the Summary table never contains more records than the Registra-
tion table, and normally contains far fewer. The speed of a join is
dependent on the size of the initial selection, so reducing the initial
selection directly reduces the time required to complete the join.

TASK 2: A MORE COMPLEX QUERY

Find customers who own three or more copies of SuperGoldPro.

With the summary table in place it is no more difficult or time con-
suming to answer this more precise question. A simple two-field
indexed query is followed by a join. An interface that gives end
users access to this feature is easy to construct. Without a summary
table you have to perform a sequential operation on every matching
registration—a laborious and time-consuming operation.

Steps required to complete task 1.

Without Summary table With Summary table

Query Registrations for
SuperGoldPro Classic.

Query Summary for
SuperGoldPro Classic.

Join from Registrations to Custom-
ers.

Join from Summary to Customers.

Steps required to complete task 2.

Without Summary table With Summary table

Query Registrations for SuperGoldPro Query Summary for records with
SuperGoldPro and three or more
registrations

Sort Registrations by Customer_ID

Create an empty set in Customers

Step through each record in Registra-
tions, counting up how many copies
a customer has. If a customer owns
three or more copies, add them to
your set.

Join from Summary to Customers.
© 1997 David Adams & Dan Beckett. All Rights Reserved.
Adapted from Programming 4th Dimension: The Ultimate Guide.

Summary Tables
TASK 3: A COMPOUND QUERY

Find customers who own three or more copies of SuperGoldPro
Workgroup and exactly two copies of SuperGoldPro Report
WriterPlus.

Each of these solutions appears complex, but with the summary
table in place the routine needed is short (commands are shown
without full parameters) and quick:

QUERY([Summary])
RELATE ONE SELECTION([Summary];[Customers])
CREATE SET([Customers])
QUERY([Summary])
RELATE ONE SELECTION([Summary];[Customers])
CREATE SET([Customers])
INTERSECT
USE SET

The queries and joins are all indexed, non-sequential operations,
and set operations are extremely fast regardless of selection size.
The alternative method, without the summary table, requires error-
prone custom programming, direct record access, sequential inspec-
tion of records, and excessive network activity under 4D Server.

Steps required to complete task 3.

Without Summary table With Summary table

Query Registrations for SuperGold-
Pro Workgroup.

Query Summary for SuperGoldPro
Workgroup registrations with a reg-
istration count of three or more.

Sort Registrations by Customer_ID.

Create an empty set in Customers.

Step through each record in Regis-
trations, counting up how many
copies a customer has. If a customer
owns three or more copies, add
them to your set.

Join from Summary to Customers.

Create a set of the found customers Create a set of the found customers.

Create an empty set in Customers

Query Registrations for SuperGold-
Pro ReportWriterPlus.

Query Summary for SuperGoldPro
Workgroup registrations with a reg-
istration count of exactly two.

Step through each record in Regis-
trations, counting up how many
copies a customer has. If a customer
owns two copies exactly, then add
them to your set.

Join from Summary to Customers.

Create a set of the found customers.

Intersect the two Customer sets to
locate the correct customers.

Intersect the two Customer sets to
locate the correct customers.
© 1997 David Adams & Dan Beckett. All Rights Reserved.
Adapted from Programming 4th Dimension: The Ultimate Guide. 17

Normalization Is a Nice Theory

18
Notice in the previous examples that after the complicated calcula-
tions needed without a summary table are completed, all the work is
lost. You have found the correct customers for that query, but if
another user wants the same query the entire process is repeated. If
the same user wants a slightly different set of conditions they have
to wait through another long query. This gives the user the impres-
sion that the system is slow, hard to work with, and hard to get data
out of. By saving these calculations in a table for quicker and easier
access you improve life for your users. In addition, you can now eas-
ily generate a variety of reports on the summary data itself using the
Quick Report editor, or any other system you like.

TASK 4: A TREND REPORT

Show a registration trend report that tells us for each product how
many customers have one copy registered, how many have two
copies, and so on.

The easiest way to provide this report with a summary table in place
is with a Quick Report:

A sample Quick Report showing registration totals and trends.

This report requires no code, extra calculations, or special program-
ming. All it requires is the time to sort and count the records, like
any sorted Quick Report. A user can create, modify, or export this
simple report.
© 1997 David Adams & Dan Beckett. All Rights Reserved.
Adapted from Programming 4th Dimension: The Ultimate Guide.

Summary Tables
Cost of Maintaining a Summary Table

In order for a summary table to be useful it needs to be accurate.
This means you need to update summary records whenever source
records change. In our example, this means that summary records
need to be changed every time a registration is added, deleted, or
modified. This task can be taken care of in the validation script of
the record, in the After phase of the form (4D 3.x), in a trigger (pre-
ferred), or in batch mode. You must also make sure to update
summary records if you change source data in your code. Keeping
the data valid requires extra work and introduces the possibility of
coding errors, so you should factor this cost in when deciding if you
are going to use this technique.
© 1997 David Adams & Dan Beckett. All Rights Reserved.
Adapted from Programming 4th Dimension: The Ultimate Guide. 19

	Quick Look
	What is Normalization?
	Why Do They Talk Like That?
	Design Versus Implementation
	Normalized Design: Pros and Cons
	Terminology
	Primary Key
	Functional Dependency

	Normal Forms
	First Normal Form (1NF)
	Second Normal Form (2NF)
	Third Normal Form (3NF)
	Higher Normal Forms

	Learning More About Normalization
	Denormalization
	Summary Data
	Compound Fields
	Save Combined Values
	Conditions for Building Compound Fields
	When to Create Compound Fields

	Summary Fields
	Example
	What to Summarize

	Summary Tables
	The ACME Software Company*
	Cost of Maintaining a Summary Table

